Surgery Air Handler Upgrades to Meet Indiana State Department of Health (ISDH) Requirements

Elliot Lachmayer, PE, LEED AP – Applied Engineering Services Ted Kussow, PE, LEED AP BD+C – Applied Engineering Services Carl Dennin, CHC – Messer Construction Co.

Learning Objectives

- Learn how to efficiently upgrade existing mechanical systems to meet ISDH operating room requirements
- Understand how to apply new technology to existing equipment
- Discuss complexities and logistics of working in surgery environments

Problems With Meeting ISDH 60% Maximum Humidity Limit

Surgery staff wants to lower temperature in ORsProtective clothing and hot lights

Capability of Older HVAC Equipment

• Outdoor air requirements

- Problems controlling outdoor air old dampers, worn seals, loose linkage, worn actuators
- Ventilation required over the years
 - o 1970s − 20 AC/hr with 20% OA Ratio
 - 1980s-90s 15 AC/hr with 20% OA Ratio
 - $\circ~2000s-15$ AC/hr with 20% OA Ratio
 - 2015 20 AC/hr with 20% OA Ratio

Capability of Older HVAC Equipment

- Deterioration with age and operational hours
 - \circ Most ORs run 24 hr/day, 365 days/yr = 8,760 hr/yr
 - Temperature swings of -20°F to 100°F
 - Extremely hard service
- Reduce capital exposure and downtime
 - Repair and upgrade only parts needed
 - Address ISDH requirements for ventilation and humidity

ISDH Requirements

- Current Guidelines AIA 2001
 - Ventilation for ORs is 15 AC/hr
 - Outdoor air for ORs is 3 AC/hr = 20% OA Mix
 - RH Range = 30%-60%
 - Temperature = 68°F-73°F
- Future Guidelines FGI 2014
 - Ventilation for ORs is 20 AC/hr
 - Outdoor air for ORs is 4 AC/hr = 20% OA Mix
 - RH Range = 20%-60%
 - Temperature = $68\degree F-75\degree F$

Temperature and Humidity Relationship

- RH is inverse to room temperature
 - Not intuitive one would think the lower the temperature, the lower the humidity
- The lower the room temperature, the higher the relative humidity
 - To have lower temperatures, you need lower dry bulb and wet bulb temperatures off the cooling coil

How did we make it happen?

- We knew what we needed to achieve what were the options to achieve the goal?
- Considerations
 - 15 existing operating rooms
 - Lost revenue (\$75,000 per OR, or \$1.1M each day)
 - Budget constraints fixed budget
 - Schedule constraints surgery schedule
 - Constructability & existing conditions
 - Logistics
 - Surgical staff and administration influence

Options Considered

- Complete replacement in the same location
- New mechanical room in a different location
- Split existing AHU and do $\frac{1}{2}$ at a time
- Re-build

Evaluation of Existing Equipment

- Unit structurally sound and able to be rebuilt
- Rust and deterioration, Installed 1987
- Physical space for up-grades
 - Deeper coils for added ventilation and humidity control
 - Space for filters
 - Added reheat coil
 - Location for humidifiers and ISDH rules

Evaluation of Existing Equipment – The Good

Evaluation of Existing Equipment – The Bad

Evaluation of Existing Equipment – The Ugly

Changes and Improvements

- Low temperature supply air
- Dehumidification
- Humidification
- UV
- Multiple small fans
- Upgrade controls from pneumatic to DDC

Demolition

Efficient Space Utilization

Humidity Control

- Typical chilled water temp = 44°F
 Lowest room temp w/ 60% RH and 44°F water = 68°F
- "Super Cooling" water temp = 29°F
 Lowest room temp w/ 60% RH and 29°F water = 62°F
- Adding cooling coils for "Super Cool"
 - o 12 row vertical split cooling coil
 - Effect on fan static pressure = 0.6" W.C. @ 400 FPM

Vertical Split Cooling Coil

Evaluating the Fan

- Two large centrifugal fans vs. 18 small fans
- Reduced CFM 84,000 vs. 65,000
 - o 200 HP to 125 HP
- Fan walls efficiency and save space
- Redundancy
- Fan failure indication and service

Multiple Small Fans

Multiple Fans – No Mixing

Refurbished Unit Exterior

Piping to Coils

Refurbished Unit Interior

Refurbished Unit Interior

Refurbished Unit Interior

Planning/Execution

- Scheduling shutdown
 - Timing with surgery schedule
 - o 24/7 construction schedule
- Infection control clean supply storage
- Safety considerations crane, welding, worker fatigue
- ILSM temporary partitions
- Procurement of equipment 10 to 16 weeks
- Delivery of equipment

Condensed Schedule

Jobsite Access

AH

Team Approach

- Coordination with Surgery Staff/Administration
 - Having reliable information to achieve buy-in
- Key players at the table <u>early</u> in the process
 - Engineer, CM, Facilities, Trade Contractors, Infection Control, Cx Agent
 - Input from selected vendors on products
 - Budget and schedule reliability
 - Engaging user groups affected by shutdown
 - Eliminate obstacles and surprises

Summary

- Meet ISDH requirements of maximum 60% RH
- Save money and time
 - Utility cost savings = \$305,000 per Year
 - Project cost = 1.4 million
 - Project payback = 4.6 years
 - o 15 yr. Life Time Savings = 3.175 Million
- Better working environment for doctors and surgery staff

Questions? Thank you!

We Are Building Health Care.